If it's not what You are looking for type in the equation solver your own equation and let us solve it.
x^2-7x-182=0
a = 1; b = -7; c = -182;
Δ = b2-4ac
Δ = -72-4·1·(-182)
Δ = 777
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-\sqrt{777}}{2*1}=\frac{7-\sqrt{777}}{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+\sqrt{777}}{2*1}=\frac{7+\sqrt{777}}{2} $
| 29=9x+5 | | (X/3)x9=54 | | 3=12x-4 | | 2g+3=43 | | p-17p-6=38 | | 7+5x=6x-3 | | ((3*5)+2b)=45 | | 3m−2=12 | | 9x-13=x | | Y=23-3x= | | 3−2n=12 | | (-1)+n/3=(-4) | | 4m−3m=10 | | 17.75+2.375x=4+3.75 | | 9y+–12y=19 | | 52+x=5(8+x) | | 1=p/6 | | 0=-16t^{2}-24t+1400 | | 9y+–12y−–12y−–13y−3y=19 | | (8x-1)+46=18x+5 | | 8x+7=5x2 | | 9y+–12y−–12y−–13y−3y=1 | | 15+2b=45 | | (4x−2)=9+2x+5 | | m+8+23=27 | | 22+x=3(6+x) | | 2d+7/9=0 | | 0,25k=2k-14 | | 37=-7x+5(x+5) | | m+1823=27 | | 209=129-u | | 4p+7=43 |